Pump Power & Efficiency

This document is prepared by $\underline{\textit{JordanFire.Net}}^{(\!R\!)}$ @2007

Power input to the pump by the shaft driven from mechanical or electrical engine

$$P_{\mathsf{in}} = \tau * \omega$$

Where is

 $P_{\rm in}$ is the input power to the pump

 τ is the torque measured on the shaft (N.m)

 ω is the angular velocity of the driven shaft (Rad/Sec)

The power output by the pump measured by its performance parameters

$$P_{\text{out}} = \gamma * Q * H_{\text{m}}$$

Where is

 P_{out} is the output power by the pump (watts)

 γ is the fluid specific gravity ($\rho * g$) for water $\gamma = 9810 \text{ kg/m}^2$. sec.

Q is the flow rate of the fluid at the outlet of the pump (m^3 / sec.)

 $H_{\rm m}$ is the manometric head at the outlet of the pump (meter of water).

Also, we can get the power output in KW or Horse Power

As

$$P_{\text{out}} = \gamma * Q * H_{\text{m}} / 1000 \tag{Kw}$$

$$P_{\text{out}} = \gamma * Q * H_{\text{m}} / 745.7 \qquad \text{(Horse Power)}$$

The pump efficiency is

$$\zeta = P_{out} / P_{in} * 100\%$$