التمرين الأول (4 ن)

<table>
<thead>
<tr>
<th>سلم التخطيط</th>
<th>عنصرا الإجابة</th>
<th>رقم السؤال</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>العلامة المحلي = تشكيلة المحليات + الرداء التعليمي.</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>المكونات الصخرية من الأسفل إلى الأعلى: البريدوتيت، الغابرو، مركب الصورة الدولي. ثم رابط على سلسلة تدريب محلي.</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>مصير الغلاف الصخري المحلي في منطقة الطارم و علاقته بتشكل الصهارة:</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>إنطار الفن الغلاف الصخري المحلي الأكثر كثافة تحت الغلاف الصخري القاري الأقل.</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>تحرير كمية من الماء نتيجة تفاعلات التحول التي تخضع لها صخور الغلاف الصخري المحلي.</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>الانصهار الجزءي البريدوتيت مع شكل الصهارة.</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>مصير الغلاف الصخري المحلي في منطقة الاصطدام ودالذة وجوده بهذه المناطق:</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>أثناء الاصطدام يتم حجز جزء من الغلاف الصخري المحلي على شكل خيائية محيطة بين الصفيحتين القاريتين المتجاورتين.</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>يفسر وجود غلاف صخري محيطي في مناطق الاصطدام باختفاء محيطي قديم كان يفصل القارتين المتجاورتين.</td>
<td></td>
</tr>
</tbody>
</table>

التمرين الثاني (4 ن)

<table>
<thead>
<tr>
<th>سلم التخطيط</th>
<th>عنصرا الإجابة</th>
<th>رقم السؤال</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>مع ارتفاع سطوع التمرير يرتفع استهلاك ثنائي الأوكجين مما يدل على أن جسم الراحي</td>
<td>1</td>
</tr>
<tr>
<td>0.25</td>
<td>يستعمل مسلك التنفس لإنتاج الطاقة اللازمة للتنفس البشري. مع ارتفاع سطوع التمرير يرتفع تركيز الحمض اللبني في الدم مما يدل على أن جسم الراحي يستعمل مسلك التنفس البشري لإنتاج الطاقة اللازمة للتنفس البشري.</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>في العضلة: يستمر تقلص العضلة طيلة مدة الإجهاد و ينخفض تركيز الكليوبجين و يظهر الحمض اللبني بينما يبقى تركيز كل من ATP و الفوسفوركلياتين ثابتين: العضلة تجدد الطاقة بواسطة التخمر الباكي.</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>في العضلة 2: يستمر تقلص العضلة في التقلص طيلة مدة الإجهاد و ينخفض نسبة الفوسفوركلياتين بينما يبقى تركيز المركبات الأخرى ثابتًا قبل وبعد التقلص: تقوم العضلة بحالة الفوسفوركلياتين لتجديد ATP.</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>في العضلة 3: تقلص العضلة يغيب ثوان و يكتفي ATP بينما يبقى تركيز باقي ATP المركبات ثابتًا: نفاد مخزون ATP الضروري للتنقلص وعدم تجدداته.</td>
<td></td>
</tr>
<tr>
<td>التمرين الثالث (4.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>التحدي 1: يجب أن تكون كميات Ca++ و Mg++ في خلايا الأكسجين. والاحتياجات.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>التحدي 2: يجب أن تتميز كميات UDP في خلايا مخفية.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>التحدي 3: يجب أن تتميز كميات Ca++ بالكولستيرويل في دم.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>التحدي 4: يجب أن تكون كميات Ca++ في خلايا مخفية.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>التحدي 5: يجب أن تكون كميات UDP في خلايا مخفية.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- تثبيت زوجينات الكالسيوم على خبيطات الأكسجين (جزيئات الترونودين) وتحرير مواقع تثبيت رؤوس الميميوزين.
- تشكيل مركبات الأكتوميوزين.
- حمالة خبيطات الأكسجين ودوران رؤوس الميميوزين.
- إنزلاق خبيطات الأكسجين نحو مركز الساركوبمر وتقلص العضلة.

- عند الأشخاص العاديين: موجود عدد كبير من مستقبلات LDL العادية → إدخال كمية LDL من الدم إلى الخلايا → انخفاض تركيز الكولسترول في الدم.
- عند الأشخاص ذوي الإصابة متوسطة الشدة: وجود عدد متوسط من مستقبلات LDL العادية → إدخال كمية متوسطة من LDL إلى الدم → انخفاض تركيز الكولسترول في الدم.
- عند الأشخاص ذوي الإصابة الشديدة: غياب المستقبلات LDL العادية → عدم إدخال LDL إلى الخلايا → ارتفاع كبير للكولسترول في الدم.

- الحليل العادي:

 AAA-AAC-UGG-CGC-CUU : ARNm
 Lys-Asn-Try-Arg-Leu : متاليات الأحماض الأمينية

- الحليل الطفأ:

 AAA-AAC-UAG-CGC-CUU : ARNm
 Lys-Asn : متاليات الأحماض الأمينية

- تشابة بين الشخص السليم والشخص المصاب في جزء المستقبل الذي يوفر على جزيئات LDL، وانفصال في الجزء السينيولوجي الذي يوفر على عدد أقل من الأحماض الأمينية عند الشخص المصاب، مقارنة بشخص السليم.
- حدوث طفرة موضعية بدون مفعول (استدال ت - T) في مستوى الARNm.
- توقف تركيب متاليات الأحماض الأمينية وبالتالي تركيب بروتين غير عادي (مستقبل غير طبيعي)...

- عند الشخص السليم: المستقبلات عادية وتقوم بوظيفتها في إدخال جزيئات LDL إلى الخلايا، وبالتالي يكون تركيز الكولسترول في الدم عادي.
- عند الشخص المصاب: المستقبلات غير عادية ولا تقوم بوظيفتها في إدخال جزيئات LDL إلى الخلايا، وبالتالي يكون تركيز الكولسترول في الدم مرتفعًا...
التمرين الرابع (4.5 ن)

- التزاوج الأول:
 • يتعلق الأمر بجديدة ثنائية;
 • الجيل الأول متجانس حسب القانون الأول لماندل، إذن الأبوين من سلالتين نقتيتين;
 • الحليل المسؤول عن الجسم الرمادي (b) سائد على الحليل المسؤول عن الجسم الأسود المنحنى (c) عند الجيل المسؤول عن الأجنحة العادية (c+) سائد على الحليل المسؤول عن الأجنحة المنحنية (c)
 0.75

- التزاوج الثاني:
 • يتعلق الأمر بجديدة اختياري بين فرد هجين من الجيل F1 وفرد ثنائي التنحية;
 • نسبة المظهر الخارجي البنية (72.4%) أكبر من نسبة المظهر الخارجي جديدية التركيب (27.6%); فالمورثات المدورستان مرتبتان.
 0.5

- التفسير الصبغي للتزاوج الثاني:

 \(\begin{align*}
 [b,c] & \times [b+,c+] \\
 \text{المظهر الخارجي:} & \\
 \text{الأنماط الوراثية:} & \\
 \text{الأمراض:} & \\
 b/c & b+/c+/ b/c, b+/c, b c+/b c & b c+/b c & b+/c+/ b c, b+/c, b c+/b c & b+/c+
 \end{align*} \)

- شبكه التزاوج:

<table>
<thead>
<tr>
<th></th>
<th>b/c+</th>
<th>b+ c+</th>
<th>b/c</th>
<th>b+/c+</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>13.6%</td>
<td>12.9%</td>
<td>37%</td>
<td>36.4%</td>
</tr>
<tr>
<td>ثاني التنحية</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b c+/b c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- التظاهرة المورثة عن التنوع الوراثي للمظهر الخارجي هي ظاهرة البور.
- تخليط الحليلات (التخليط الضمسي) أثناء تشكيل أمراض أفراد الجيل F1.
- 0.75
- حساب التردد الملاحظ للحليلات:

<table>
<thead>
<tr>
<th></th>
<th>f(E1)</th>
<th>f(E2)</th>
<th>f(E1)</th>
<th>f(E2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>عند ساقنة القبو:</td>
<td>140/400 + (1/2 * 200/400) = 0.6 = p</td>
<td>60/400 + (1/2 * 200/400) = 0.4 = q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>عند ساقنة الحقل:</td>
<td>60/400 + (1/2 * 140/400) = 0.325 = p</td>
<td>200/400 + (1/2 * 200/400) = 0.675 = q</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

العامل المسؤول عن عدم توازن ساقنة الحقل هو حدوث هجرة أحادية الاتجاه: انتقال ذيلات خلي من ساقنة الحقل إلى ساقنة الحقل كما يؤدي إلى نقل حليلتها وبالتالي تغير البنية الوراثية للساقنة المستقبلية (ساقنة الحقل)
- 0.5
التمرين الخامس (3 ن)

<table>
<thead>
<tr>
<th>رقم</th>
<th>الشعبة</th>
</tr>
</thead>
</table>
| 1 | ب) بعد الحقن الأول بمواد المضادات A للاستجابة لظهور مضادات الأجسام في الدم بعد أسبوع ويكملا ضعيفة سلبية (استجابة أولية)، وبعد الحقن الثاني بنفس مول المضادات A يلاحظ ظهوراً فورياً لمضادات الأجسام (استجابة ثانية): الدائرة المناعية.
| | 0.25 |
| 2 | ب) بعد الحقن مواد المضادات B في الأسبوع الرابع لظهور حدوث استجابة ثانية ضد مول المضادات A، واستجابة أولية ضد مول المضادات B: الاستجابة المناعية نوعية.
| | 0.25 |
| 3 | تظهر فيروسات الزكام في الدم ابتداء من اليوم الثاني ويرتفع تركيزها حسب الزمن، ثم ينخفض إلى أن يختفي في اليوم العاشر.
| | 0.25 |
| | تظهر فيروسات الزكام في الدم ابتداء من اليوم الثاني ويرتفع تركيزها حسب الزمن، ثم ينخفض إلى أن يختفي في اليوم العاشر...
| | 0.25 |
| | 2
| 4 | بالنسبة لمضادات الأجسام ضد المحددات المستضدية A وال C، نلاحظ ارتفاعاً في تركيزها عند الاتصال مع السلالة 2 مقارنة بالاتصال مع السلالة 1.
| | 0.25 |
| | بالنسبة لمضادات الأجسام ضد المحددات المستضدية B وال D، نلاحظ انخفاضاً في تركيزها عند الاتصال بالسلالة 2 مقارنة بالاتصال بالسلالة 1.
| | 0.25 |
| | استنتاج: بالنسبة للمحددات المستضدية A وال C، يكشف الاختلاف الملاحظ عن خاصة في الدائرة المناعية...
| | 0.25 |
| | 3
| 5 | محددات مستضدية مشتركة B وال C، اختفاء المحدد المستضديبين F و E، وظهور المحدد المستضديبين E و F عند الاتصال بالسلالة 2 أظهر الجسم استجابة ثانية بالنسبة للمحدد المستضديبين A وال C، وظهور استجابة أولية ضد المحدد المستضديبين الجدد F و E، لأنه لم يسبق له التعرف عليها. وبذلك فالتفتيح ضد السلالة 1 لا يحمي الجسم ضد السلالة 2.
| | 0.25 |

WWW.KHAYMA.COM/FATSVT